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magnitudes and the second neighborhoods contain 41 
magnitudes. Because the derivation of these neighbor- 
hoods is so similar to that given in {}3 for P2~, no 
further details for P2 ~2 z21 are given here. 

5. Concluding remarks 

By embedding a given structure seminvariant T and its 
symmetry-related variants in appropriate structure 
invariants Q, one obtains the extensions of T and in 
this way reduces the probabilistic theory of the struc- 
ture seminvariants to that of the structure invariants. 
Details have been described for the three-phase 
structure invariants in PI  and P i ,  the three-phase 
structure seminvariants in P21, and three kinds of 
special three-phase structure seminvariants in P212~21. 
The method is clearly capable of extension to the 
structure seminvariants in general. There remains the 
task of deriving the associated conditional probability 
distributions leading to estimates of the structure 
seminvariants. Because the full second neighborhoods 
often contain so many magnitudes lEt, not all of which 
may be in the observable sphere of reflections, it will in 
general be necessary to derive distributions which 
assume as known only certain subsets of these neigh- 
borhoods. Finally, it should be pointed out that the 
discriminant of the structure seminvariant, a polynomial 
in the presumed known magnitudes I EI, which is easily 
derived, easily computed and strongly correlated with 
the true value of the structure seminvariant [compare, 

for example, the discriminant for quintets (Fortier & 
Hauptman, 1977)], may often serve as a substitute for 
the true distribution, especially in those cases when 
sufficiently accurate and computable forms for the 
latter are particularly difficult or even impossible, as yet, 
to derive. 
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Determinantal Equations for the Scale Factor, Temperature Factors and Quantitative 
Chemical Contents of the Unit Cell 
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A class of determinantal equations for the scale factor, the temperature factors and quantitative chemical 
contents of the unit cell is derived assuming non-penetrating atoms but without making use of statistical 
arguments. A new method for the determination of the scale and Debye-Waller factors is developed on the 
basis of these equations and applied to the structure factors of AI(OH)3, giving results with errors of about 
2%. 

The various methods of structure analysis require the 
knowledge of the moduli of a sufficient number of 

* Present address: Weidenstrasse II, D-6234, Hattersheim 3, 
Federal Republic of Germany. 

Fourier coefficients of the scattering density function of 
the crystal to be analysed and a more or less complete 
knowledge of the form factors of the atoms present in 
its elementary cell. 

Except for the scale factor and the temperature 
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factors, the required quantities are usually obtained 
with the help of physical laws from the routine 
experiments which precede structure analysis. For the 
determination of the scale factor and Debye-Waller 
factor additional assumptions of a statistical kind are 
made (Wilson, 1942). 

If we assume that the atoms of a crystal do not 
interpenetrate, we can derive a system of equations for 
the determination of the scale factor, the temperature 
factors and the numbers of atoms of different kinds in 
the unit cell without making use of statistical argu- 
ments. This system of equations is derived in a similar 
way to the equations, of Sayre (1952) and Woolfson 
(1958) by making use of a special class of locally 
defined mappings of the scattering-density function, 
which are closely related to those generating the 
convolution-type structure factor equations 
(Rothbauer, 1975, 1976, 1977a,b). 

T h e  e q u a t i o n  

The derivative of the scattering density 

1 
p(x) = ~. ~ F(m,p)exp (--2zc/m.x) 

i n  

along an arbitrary vector v is 

1 
dp(x)/dv = ~. ~ (-27rim.v)F(m,p) exp(-2~im.x) ,  

I n  

where F(m,p) is the structure factor of p at reciprocal- 
lattice point m. If D* is a differential operator, 
representing a linear combination of direction 
derivatives of different order along different directions, 
v 1, v 2, v a . . . ,  we have 

1 
D*p(x) = ~,. Z G(m)F(m,p)exp(--2~rim.x), 

m 

where G(m) is a polynomial of the scalar products, 
m.vl,  m.v  z . . . . .  and hence a polynomial of the 
coefficients ml, mz, m3 of m. 

The structure factor of D*p is then given by 

r(h,D*p) = G(h)r(h,p). (1) 

If we denote the complex conjugate ofp  by/~ we obtain 

and hence 

1 
/5(x) = ~ . Z  F(m,p) exp(2mm, x) 

i n  

: 1 Z  /V(--m'P)exp(--2n'/m. x) 
I n  

F(h,b) = F(--h,p), 
and applying (1) 

F(h,D*p) = (7(--h)/~(--h,p). (2) 

If p~ and P2 are density functions of the same 
translational periodicity we have 

1 
F(h, P,P2) = ~ Z F(m,p,)F(h -- m, P2). (3) 

m 

Using (1) and (2) it follows that 

F(h, D ~*pD~'p) 

1 
= ~,, ~ Gl(m)G-~2(m - h)F(m,p)F(m - h, p). (4) 

i n  

The Fourier summation of the periodically repeated 
scattering-density function of the vth atom of the gth 
kind with position xuv in the elementary cell is 

1 
p~,~ (x)=  ~, Z F(m,p,)t,~(m) 

n l  

exp[--2nim. (x -- x,v)] (5) 

where F(m,p,) is the form factor of the atoms of the gth 
kind at rest at lattice point m, and t , , (m) is the 
temperature factor of the vth atom of the/zth kind. 

We then have 

F(h,p.~) = F(h,pu)t.~(h ) exp (27eih. x.v) 

and by the application of (1) and (2) 

F(h,D*p.~) = G(h)F(h,pu)t.~ (h) exp (2zcih. xu~ ) 

F(h,D*p.~) = G(--h)/~(- h,p.)tu~ (--I1) exp (2 ~zt'h. xuv ). 

Using equation (4) this implies 

F(h, * * DIPu~,D2P.,,) 

: 1 Z Gl(m)(~2(m--h)F(m,p.) 
V _m 
× F(m - h ,  p.) 

× t.~(m)}u~(m--h)exp(2zeih.x.~). (6) 

Now, let p be the number of types of atom present in 
the crystal and q(g) the number of atoms of the gth 
type, then 

p q(u) 

p(x)=  ~ ~puv(x)  
U = I  v = l  

represents the scattering-density function of the crystal. 
Because of the local character of the mapping, 

r ( p )  , , = DlPD2P, 

of the scattering-density function we may conclude 

p q(u) 
D~*pD~*p-- y y * * Dlp.vD2P.v (7) 

~ = 1  v = l  

providing the atoms of the structure do not interpen- 
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etrate. Taking the Fourier transform of (7) we have 

p q(~) 

F(h, D*pD*p) = Z Z F(h, D*p~,,,D*p,~,,) 
g=l o=l 

and by inserting equation (4) and (6) we obtain a 
system of equations 

0 =  ~ G~(m)02(m-h)  IF(m,p)P(m-h,p) 
!111 L 

P 
- ~ F(m,p~,)F(m - h, p,,) 

/ z = l  

q(~) ] 
x Z t~,,(m)t~,,(m-- h)exp(2nih.x,~,) 

v = l  

labelled by the polynomials G 1 and G 2, representing 
differential operators D* and D{'. 

We may obviously define Gl(m) and G2(m) more 
generally, without altering the derived equations, by 
requiring only that the basis (German :Tr~iger) of the 
Fourier transform of G(m)F(m,p~,) is not more exten- 
sive than that ofp,~, g = 1, 2 . . . . .  p. 

Applying the derived equations for the case of point 
scatterers we have to replace the G(m) functions by the 
form factors F(m,y) of arbitrary density functions 7 no 
more extensive than a sphere with diameter equal to the 
minimum distance of the scatterers (Rothbauer, 
1977a). 

We notice that the class of functions which repre- 
sents allowed G(m)'s is very restricted. 

As we can use any polynomial of degree N in the 
variables ml, m2, m3 as a G(m) function if the p~, (x), 
g = l, 2, . . . p are N times differentiable, we may 
approximate any piece-wise continuous single-valued 
function of m in the range of reciprocal space covered 
by experiment with arbitrary accuracy by an allowed 
G(m) function if N is sufficiently large. 

Such a fitted polynomial will not necessarily be 
useful in practice because it may increase with 
increasing m 2 so quickly outside the range covered by 
experiment, that the termination errors in the above 
equation may be serious. 

For practical applications we will therefore have to 
impose further restrictions on the G(m) functions. We 
will return to this point at the end of the paper, when a 
numerical example will be given. 

For the case h = 0 the above system of equations 
does not depend on the phases of the structure factors 
and the coordinates of the atoms: 

0 =  Z G,(m)t~2(m) VF(m,P)['(m,P) 
HI L 

q(u) 1 
- -  ~ F(m,pn)F(m,P~,) Z t~,,(m)i~,,(m) . 

/ 4 = 1  u = l  (8) 

We may formally describe (8) by saying that the 
height of the origin peak in a weighted Patterson 
synthesis is equal to the sum of the squares of the 
similarly weighted temperature-corrected atomic scat- 
tering factors. However, we cannot develop the 
properties of the allowed weighting functions G(m) on 
the basis of this interpretation. To derive these 
properties we are forced to make use of the fact that the 
atoms do not interpenetrate, a proposition which is not 
necessary in order to calculate the Patterson function. 

Special cases 

We may express t~,~(m), to a first approximation, by 

t~,~(m) = exp ( -m.[~ ,  m), (9) 

where I~,~ is a positive definite symmetric tensor 
(Cochran, 1954; Rollett & Davies, 1955; Waser, 
1955). If we approximately describe the thermal 
movement of all the atoms of the gth kind by a single 
tensor 13,~ we have 

q(~) 

t~,~(m)-t~,~(m)=q(/J)exp(-2m.~,~m). (10) 
o = l  

Let I(m) be the experimentally determined relative 
intensity at lattice point m and s be the scale factor 
independent of m; then 

F(m,p)['(m,p) = s/(m). (11) 

Inserting (10) and (1 l) into (8) and taking the usual 
symbolf,~ (m) instead of F(m,p,,) for the form factors of 
the atoms of the gth kind, one obtains the system of 
equations 

r -  

0 =  Y Gl(m)02(m) / sI(m) 
n l  L 

- ~ f , (m)) ' , (m)q(g)exp(-2m.[3,m)](12)  
~=1 

from which the scale factor s, the temperature tensors 
~,,,/1 = 1, 2 . . . . .  p, and the chemical contents of the 
elementary cell described by q(/0, g = i, 2 . . . .  , p, can 
be derived. 

It is beyond the scope of this paper Io present a 
method by which the system of equations can be 
solved. We restrict ourselves here to the derivation of 
the system of equations (8) and (12), using the 
proposition of non-penetrating atoms, and to the 
discussion of the allowed weight functions G(m). 

To demonstrate the usefulness of the system of 
equations (8) and (12) we will give the description of a 
new method for the determination of the scale and 
Debye-.Waller factor on the basis of the previous 
considerations. 

Before we do this, we will discuss some further 
simplifications. In most cases the q(g) can be deter- 
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mined from a quantitative chemical analysis, a know- 
ledge of the lattice constants and the density of the 
crystal, so that 

I ,  (m) = f ,  (m)f,  (m)q(/t) (13) 

is a quantity which can be derived independently of the 
intensity measurements. We can therefore use the 
following system of equations: 

O= ~ Gl(m)t~2(m ) / s I (m)  
!111 I_ 

, ] - ~ I ,  (m) exp ( - 2 m  .13, m) (14) 
~ t = l  

for the determination of the scale factor s and the 
temperature tensors 13,,/~ = 1, 2 , . . . ,  p. 

The special case G~(m)d;2(m) = 1 of these equations 
has been derived by Kartha (1953), Krogh-Moe (1956) 
and Norman (1957). 

The description of the thermal motion (9) and the 
assumption that the thermally enlarged scattering 
density functions of the atoms of the crystals do not 
penetrate each other are approximations, therefore (14) 
is also an approximation. However, as the penetration 
occurs only in the outer parts of the atoms, with low 
scattering density, the resulting errors should be small. 

If we want to use only one tensor 13 for the 
description of the thermal movement of all atoms of the 
crystal we obtain from (14): 

0 =  ~ Gl(m)t~2(m ) [s I (m)  
m L 

- exp(-Em.l ]m)  ~ l . (m)  ] .  (15) 
~ = 1  

If one tensor 13 is sufficient for the description of the 
thermal motion of all atoms, we may derive a system of 
equations for the determination of s and p which differs 
from (15). By leaving the temperature factors t,v(m ) 
out of the previous treatment and assuming that p is the 
scattering density function of a hypothetical crystal, 
with atoms at rest, (7) is more strictly valid. The 
intensities of the hypothetical crystal are derived from 
those of the real crystal by multiplying with the factor 
exp (2m. ~m). This leads to 

0 =  Y~ Gl(m)t~z(m) [ s l ( m ) e x p ( 2 m . ~ m )  
Ell t_ 

- ~ I . ( m ) ]  . (16)  
g.----I 

To the most simple description of the thermal 
movement, given by the Debye-Waller factor B, 
corresponds an isotropic movement of all the atoms of 
the structure, so that we have instead of (9) 

t.~ (m) = exp (--Bm2/4), 

where B is a number independent of/~ and v. (15) and 
(16) then become 

0 =  Y Gl(m)d;2(m) [ s I ( m )  
L m 

, ] 
--  exp(--Bm2/2) ~ I . (m)  , (17) 

~ = 1  

0 =  Y. G,(m)(~2(m) [sl(m)exp(Bm2/2) 
nl  

, ] 
--  ~ I . ( m )  , 

/ t = l  

respectively. 

(18) 

Calculat ion  o f  scale and D e b y e - - W a i l e r  factors 

We may formally describe the Wilson (1942) statistics 
by G functions and (17). The reciprocal space is 
divided into N spherical shells separated by the spheres 
m 2=cs_, j=  1,2 , . . . ,N,O<c 1<c 2< . . .<c  mand 
G:,(m)G:(m) is defined to be equal to 1 inside the j th 
shell and equal to 0 outside. In this way one gets N 
determinantal equations of type (17) from which the 
Wilson plot is derived. 

As the bases of the Fourier transforms of 
Gjk(m)F(m,p,,) are in this case more extensive than the 
bases of p,,, we cannot completely see from this point of 
view how the statistical method works (see also Harker, 
1953; Magdoff, Crick & Luzzati, 1956). 

We may approximate the G(m) functions of the 
Wilson statistics with arbitrary accuracy by poly- 
nomials, which are allowed G functions, in the range of 
reciprocal space covered by experiment, but these 
polynomials are not necessarily optimal ones, because 
they may increase so quickly with m 2 that the 
termination errors are serious. 

Applying (14) to (18) one is forced to cut off the 
series somewhere, so that one has to work with 
functions G(m), which disappear if m z exceeds a certain 
limit and which are therefore not allowed in a strict 
sense. For practical applications one must therefore 
take into account the termination of the series. This can 
be done by choosing G functions, such that the 
essential part of the Fourier transform of G(m)F(m,p,), 

= 1, 2 . . . .  , p, is not more extensive than the basis of 
p, if one terminates the series. 

Appropriate approximations of G functions for (17) 
and (18) in the range of m 2 which is usually covered by 
experiment are obviously given by exp (bin2/4) if b > 0 
is in the range of observed Debye-Waller factors, so 
that the function reduces the effect of thermal motion 
and does not enlarge the essential parts of the bases of 
the p,. 
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Accordingly exp (m. am) with positive definite tensors 
a will be suitable for insertion into (14), (15) and (16). 

One should then not interpret (8), (12) or (14) as a 
difference of two sums over the points of reciprocal 
lattice, terminated at different values of m 2. Using 
similar arguments as in the Wilson statistics, one may 
estimate that the rest of the series of the two terms of 
the difference (minuend and the subtrahend) will 
approximately annihilate each other if one terminates 
both in the same way. 

We denote by K the absolute intensity of the origin 
of reciprocal space: 

K= sZ(O) = F(O)P(O). 
From (13) we have 

P 
K= Y q(#)q(v)f,(O)~fv(O). (19) 

~ , v : l  

Setting 

D E T E R M I N A N T A L  EQUATIONS FOR SCALE AND T E M P E R A T U R E  FACTORS 

gives a solution for the scale factor and Debye-Waller 
factor. 

Two curves in an infinitesimal neighbourhood with b 
values b and b + db intersect where the derivative Os/Ob 
of (21) disappears. We find 

P 
J(m) = Z I , (m)  (20) 

t t= l  

and inserting (19), (20) into (17) and solving for s we 
obtain, with the choosen approximation G ~(m)G z (m) = 
exp (bm2/2), 

{ ~ exp[(b-B)m2/2lJ(m) - K }  
m (21) S~_. 

For every value of b, (21) describes s as a function of B 
and hence a curve in an s, B diagram. The intersection 
of two curves of this kind for two different values of b 

103 d~b 

80 1"0 )70 

Fig. 1. The dependence of Os/Ob on B for b = 0 with a series 
termination of (sin tT)/~. = 0.70 A-L 

Os/c~b = [ Y m (m2/2)exp[(b - B)m2/2lJ(m) 

× Y exp(bm2/2)l(m) 
m~0 

- {  ~ 

× ~. (mZ/2)exp(bm2/2)I(m)] 
rn:~O [ ]2 

+ ~ exp(bmZ/2)I(m) (22) 
me0 

and hence the determinantal equation 

0 =  Z (mZ/2)expl(b- B)m2/2]J(m) 
!11 

× Y exp(bm2/2)I(m) 
m:/:0 

- {~exp[(b-B)m2/2]J(m) - K }  

k re:g0 _1 

for the Debye-Waller factor B. 
For each value of b a solution for the temperature 

factor B and the scale factor s may be derived from 
(23) and (21). To keep the termination errors low it 
seems desirable to use both equations with b = 0. 

For a numerical example the structure factors of 
bayerite, AI(OH) 3 (Rothbauer, Zigan & O'Daniel, 
1967), calculated with B = 1 and s = 1, were chosen. 
Fig. 1 shows the dependence of Os/Ob, (22), on B for 
b = 0 with a series termination of (sin 0)/2 = 0.70 A -1. 
The intersection with the B axis gives the Debye-  
Waller factor 1.05 A -2. Inserting this number together 
with b = 0 into the right-hand side of (21) gives the 
scale factor 0.98. These estimates are within 5 and 2%, 
respectively, of the theoretical values. 

The calculations were repeated, terminating the 
series at (sin 0)/2 = 0.65 and 0.60 A -1 .  The results are 
given in Table 1. The corresponding Wilson plots were 

Table 1. Results of first calculation of B and s 

I (sin 0)/21ma~ B s 

0.60 1.01 0"99 
0"65 0.97 0"99 
0.70 1-05 0.98 
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Table 2. Results of  second calculation of  B and s 

[(sin 0)/2]ma X B s Points 

0.60 0.85 1-18 7 
0.65 0.71 1.19 8 
0.70 0.89 1.12 9 

calculated dividing the range of (sin 2 0)/22 into seven, 
eight and nine equidistant zones respectively. A straight 
line was interpolated with the help of the method of 
least squares into each of the diagrams and the values 
for s and B in Table 2 were obtained. 

If the temperature factors are so large that the 
effective interpenetration of the atoms is considerable, 
one should use (18) instead of (17). This is equivalent 
to replacing b in (17), (21), (22) and (23) by b + B. 
Hence, in (21) and (23) the errors resulting from 
thermal interpenetration of the atoms decrease, but the 
errors from series termination increase with b. 

If one wants to find s and I~,~, g = 1, 2, . . .  ,p,  or s 
and 13 it seems appropriate first to determine s and B by 
(21) and (23) and then to refine this result by (15) or 
(16) and finally by (12). 

The author wants to thank Professor M. M. 
Woolfson for many helpful discussions and Drs M. 
Irvin and W. Horst for helpful comments on the manu- 
script. The work was supported by the Deutsche 
Forschungsgemeinschaft. 
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Extrapolative Filtering. 
I. Maximization of Resolution for One-Dimensional Positive Density Functions 
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A one-dimensional formalism based on extrapolative filtering can lead to electron-density maps at more than 
twice the resolution displayed by maps obtained by straightforward Fourier synthesis of structure factors. A 
worked example illustrates the computations for a hypothetical one-dimensional structure. 

1. Introduction 

Norbert Wiener's Extrapolation, Interpolation, and 
Smoothing of  Stationary Time Series (1949) is of for- 
bidding difficulty to most physical scientists. Originally 
published under military classification (Wiener, 1949, 
p. v), its importance was ironically acclaimed as those 
with access termed it 'The Yellow Peril' for the color of 
its binding (Bode & Shannon, 1950). Motivated by the 
need to simplify Wiener's work and relate it in a more 
obvious way to physical problems, Bode & Shannon 

(1950) presented a simplified development of Wiener's 
principal results in terms of electric-circuit theory. 
However helpful their work may have been, it does not 
appear to have provided an immediate impetus to 
scientific applications involving discrete time series, 
possibly because in the case of discrete time it is 
difficult to follow the mathematics intuitively. After 
some years, Enders Robinson (1967) put together an 
elementary account of discrete filters and included 
Bode & Shannon's presentation of Wiener's work in a 
still simpler form adapted to discrete time series. But 


